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Abstract

During the perception of apparent motion, activity along the apparent motion trace has been found in the primary visual cortex. It
has been hypothesized that this activity interferes with stimuli presented on the apparent motion trace (‘‘motion masking’’). We inves-
tigated whether this perceptual interference varies with regard to the trajectory of a moving object token in a detection task. We found a
general decrease of detectability of targets presented on the trace. Surprisingly, targets presented in time with the trajectory were detected
significantly more often than targets which appeared out of time. We relate this finding to a spatio-temporally specific prediction of visual
events along the apparent motion trace.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

When two spatially separated stimuli are presented in
rapid succession, an illusionary percept of motion between
the two stimuli emerges, called ‘‘apparent’’ or ‘‘strobo-
scopic’’ motion. Under certain conditions, a vivid motion
trace is perceived and this illusionary percept is hardly dis-
tinguishable from real motion (Korte, 1915; Shepard &
Zare, 1983). The motion trace can also be investigated
for conditions of long-range apparent motion that induce
less vivid illusions and are clearly distinguishable from real
motion. Recently, several functional magnetic resonance
imaging (fMRI) studies in humans have demonstrated that
this subtle perceptual filling-in is accompanied by a neuro-
nal filling-in in the primary visual cortex (V1): apparent
motion induces a blood-oxygenation-level-dependent
(BOLD) response in the primary V1 along the apparent
motion trace that is related to the conscious perception
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of movement (Larsen, Madsen, Lund, & Bundesen, 2006;
Muckli, Kohler, Kriegeskorte, & Singer, 2005; Seghier
et al., 2000; Sterzer, Haynes, & Rees, 2006; but see Liu,
Slotnick, & Yantis, 2004). This activity is thought to be
mediated either by lateral interactions within V1 (Series,
Georges, Lorenceau, & Fregnac, 2002) or via feedback to
V1 from higher visual motion areas such as hMT+/V5,
that are activated by real, imagined, and apparent motion
(Goebel, Khorram-Sefat, Muckli, Hacker, & Singer, 1998).
The functional role of the activity along the apparent
motion trace in V1 is still unknown. Neurons could, for
instance, be involved in representing the motion percept,
or neuronal activity could be altered by a prediction of
visual events along the trace.

‘‘Motion masking’’ refers to the finding that the percep-
tion of an object on the apparent motion trace is impaired,
as shown in psychophysical experiments by Yantis and
Nakama (1998). In these experiments, observers had to
identify a target on the apparent motion trace. A compar-
ison of the performance for targets on and off the trace
showed that the perception of targets on the motion trace
was selectively impaired, irrespective of the fact that the
physical stimulation was identical in both conditions.
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These findings were interpreted in terms of an explicit rep-
resentation of a motion token on the trace of apparent
motion, mediated via feedback from hMT+/V5 onto V1,
which interferes with the representation of the target stim-
uli (but see Liu et al., 2004). In fact, it has been shown that
the apparent location of an apparently moving stimulus
advances smoothly, linearly and with almost constant
velocity between the two actually presented locations in
apparent motion displays (Shioiri, Cavanagh, Miyamoto,
& Yaguchi, 2000; but see Caelli & Finlay, 1979; Finlay &
Caelli, 1979). Hence, it might be expected that the masking
effect varies dynamically in accordance with the dynamics
of the representation (Freyd, 1987) of an object moving
in space. Such an interference pattern could be taken as
an indication of spatio-temporally specific feedback from
higher order areas onto V1. In this sense, the observed reti-
notopic activity on the apparent motion trace could consti-
tute the neuronal substrate of a dynamic representation.

Our aim for this study was to clarify whether the inter-
ference along the apparent motion trace is temporally uni-
form or dependent upon the assumed time course of the
apparent motion. Underlying was our interest in the func-
tional role of the feedback activity found in V1 which is
likely to be involved in motion masking. We varied the
time at which we presented low contrast targets on differ-
ent positions along the apparent motion trace. The
appearance of the targets could match or not match the
presumed location of the apparent motion illusion. Detec-
tion rates for targets presented in time with the illusionary
movement were expected to differ from detection rates of
targets that did not match in time: matching targets could
be masked more strongly than non-matching targets, as it
has been shown for real motion (Kolers, 1963a; Kolers,
1963b). This would argue in favor of a dynamic, analog
representation interfering with the representation of a sta-
tionary stimulus. However, as the stimuli inducing an
apparent motion percept are presented with a constant
inter-stimulus-interval (ISI) and fixed origin and terminus
positions, they are usually also highly predictable. Conse-
quently, matching targets might as well be detected more
easily than non-matching targets. This could be related to
a time specific prediction (Mumford, 1992) about the tra-
jectory of the apparent motion, or to an attentive mecha-
nism involved in motion detection (Cavanagh, 1991, 1992;
Hikosaka, Miyauchi, & Shimojo, 1993; Lu & Sperling,
1995). One or both mechanisms could then counteract
the effects of motion masking along the apparent motion
trace in V1.

An explanation of the motion masking effects in terms
of para- and/or metacontrast masking was sought to be
ruled out by comparing the apparent motion condition
with control conditions. Additionally, we chose a spatial
separation of more than 4� between the targets and the ori-
gin and terminus of the apparent motion stimulus. With
such a large spatial distance between the targets and the
possible masks, forward and backward masking effects
break down, whereas the quality of apparent motion
remains relatively stable (Breitmeyer, 1984; Efron & Yund,
1999; Weisstein & Growney, 1969).

2. Methods

2.1. Subjects

Eight healthy volunteers (five female), including one of the authors
(CMS), all with normal or corrected-to-normal vision, participated in
the experiment.

2.2. Stimuli

Stimuli were generated using Presentation software (Version 9.90,
www.neurobs.com) and were comparable to those used in a previous
study (Muckli et al., 2005). Subjects viewed the screen (LG Flatron
L1720B, resolution 800 · 600, refresh rate 75 Hz) from 47 cm distance.
All stimuli were presented on a gray background (51.8 cd/m2). A white
fixation cross (212 cd/m2, 0.77� · 0.82�) was always displayed at the
center of the screen. We used white rectangles (212 cd/m2) as stimuli
and presented them on the right side of the fixation cross (eccentricity
of 7.72�) at two fixed positions with a vertical separation of 16.47�.
There were three experimental conditions: in the apparent motion con-
dition, stimuli were flashed in succession at these two positions (see
Fig. 1). Each apparent motion cycle started with a lower rectangle.
Stimulus duration was 80 ms, with an ISI of 93 ms, and an inter-
cycle-interval of 93 ms. This resulted in a presentation frequency of
2.88 Hz, which is known to lie in the range optimal for apparent
motion (Finlay & von Grünau, 1987). Two static control conditions
were introduced to separate masking effects elicited by the stimuli
inducing an apparent motion percept from motion masking caused by
the apparent motion itself: in the first control condition (control lower),
the same stimulus parameters as in the apparent motion condition were
used, except that only the lower rectangle (apparent motion origin) was
flashed. In the second control condition (control upper), only the upper
rectangle (apparent motion terminus) was flashed. Presentation fre-
quency at each location was the same as in the apparent motion
condition.

The targets had the same shape and size as the other stimuli, but a dif-
ferent luminance (72.9 cd/m2). In pilot experiments, this luminance level
was found to yield an appropriate level of task difficulty. Targets were pre-
sented randomly at three different locations between the two apparent
motion stimuli, (lower position: 4.11�, middle position: 8.23�, upper posi-
tion: 12.35�; from the apparent motion origin; center-to-center distance).
Target timing was calculated by splitting the ISI between the two apparent
motion stimuli into seven frames, each lasting 13.3 ms (according to the
refresh rate at 75 Hz). The second and the sixth frame (relative to the first
apparent motion stimulus) were used for the presentation of targets, yield-
ing an ISI of 13.3 ms for a delay of one frame (delay 1) and an ISI of
66.5 ms for a delay of five frames (delay 5). Following the results of Shioiri
et al. (2000), we approximated a linear movement of the motion token
with a constant velocity, in our case of about 2� per frame; therefore,
the motion token was expected to coincide with the target presentation
at the lower position at delay 1 and at the upper position at delay 5.
The same timing and position of the targets was used throughout all
conditions.

2.3. Procedure

Subjects were seated in front of the screen in a darkened room. Con-
stant head position was assured by the use of a chinrest with forehead sup-
port. Subjects were asked to maintain fixation on the center of the screen
throughout the experiment. There was one block per condition, each last-
ing 20 min with a break of variable length after 10 min as well as between
every successive block. Condition-specific instructions were given verbally
before each trial started: subjects were instructed to press with their right
hand a specified key on a keyboard as fast as possible in response to every
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Fig. 1. Stimulus setup. (A) The apparent motion origin and terminus were
presented for 80 ms, respectively. The ISI between origin and terminus was
93 ms in case of empty apparent motion cycles. In target trials, target
stimuli were presented either with an ISI of 13.3 ms (delay 1), or with an
ISI of 66.5 ms (delay 5) with respect to the apparent motion origin. All
stimuli were presented at an eccentricity of 7.72� on the right side of the
screen. (B) Targets (gray rectangles) were presented at three locations
along the apparent motion trace with an ISI of 13.3 ms for delay 1 and an
ISI of 66.5 ms for delay 5. The dashed line indicates the presumed linear
movement of the apparent motion token in time. The motion token was
expected to coincide with the target presentation at the lower position at
delay 1 and at the upper position at delay 5. In the control conditions, only
the upper or the lower white rectangle was flashed, respectively. Target
timing and position stayed the same throughout conditions.
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target flashed between the two apparent motion stimuli, or—in the control
conditions—to targets flashed over (control lower) or beneath (control
upper) the respective rectangle. The apparent motion stimulus (or flashing
control stimuli) started and proceeded continuously at the stimulation fre-
quency of 2.88 Hz. Six to 12 cycles of apparent motion (or flashing control
stimuli) without any target stimuli were presented before the first target
appeared. During each block, a total of 360 targets (120 targets at each
of the three positions, 60 targets for each of the two delays) were pre-
sented, with 6 to 12 cycles (nine cycles on average) of apparent motion
or flashed control stimuli between target presentations. Targets were only
presented during upward apparent motion. Responses within a time win-
dow of 1000 ms after each target were recorded; responses with reaction
times shorter than 150 ms were later considered as misses (less than 1%
of the data). After every 15 targets, there was a break lasting 30 s. This
was introduced to reduce adaptation effects that are expected to occur
after prolonged viewing of apparent motion and result in a breakdown
of apparent motion perception (Finlay & von Grünau, 1987). Breaks were
indicated by a black screen (0.43 cd/m2), which turned gray 2 s before the
stimulation would start again. The order of the three conditions (apparent
motion, control lower, control upper) was counterbalanced across sub-
jects. All sessions were conducted by the same experimenter.
3. Results

Hit rates were calculated as percent of maximal hits at
each position for each delay (60 targets = 100%). Subjects
responded with a mean hit rate of 80.32% (SD 17.82%).
The mean hit rate in the apparent motion condition was
62.18% (SD 12.81%). In the control conditions, the mean
hit rate was 88.75% (SD 7.76%) for control upper and
90.03% (SD 8.37%) for control lower. Mean false alarm
rates (responses outside a window of 150–1000 ms after tar-
get presentation divided by the total number of responses)
were 14.12% (SD 34.73%) for the lower control condition,
2.02% (SD 1.87%) for the upper control condition and
11.85% (SD 15.86%) for the apparent motion condition.
A repeated measures analysis of variance showed no signif-
icant differences between the false alarm rates across condi-
tions (F(1,196) = 0.667, p = 0.464 Greenhouse–Geisser).

Because masking causes the subjects to miss the targets,
we chose the miss rates (100%-hit rate) at each position for
further analysis of masking effects. We also conducted the
same analyses for the reactions times, but found no consis-
tent effects.

In this study, we focused on the interference of a pre-
sumed representation of a motion token during apparent
motion with the detection of targets presented along its
path. More precisely, we were interested in whether this
interference covaries with the time course of the illusory
motion percept. This hypothesis can be tested statistically
by looking for an interaction between the position of a tar-
get and its timing (delay). Additionally, we wanted to
establish this interaction as being specific to motion mask-
ing; therefore, we compared masking during apparent
motion to conditions in which we expected spatial masking
effects that vary in time in a different manner.

Both these questions were addressed simultaneously in a
repeated measures multivariate analysis of variance
(MANOVA) with factors condition (control lower, control
upper, apparent motion), position (lower, middle, upper),
and delay (1, 5). This yielded significant main effects of con-
dition (F(2,6) = 17.390, p = 0.003, g2 = 0.853), position
(F(2,6) = 24.461, p = 0.001, g2 = 0.891), and delay
(F(1,7) = 8.295, p = 0.024, g2 = 0.542), as well as signifi-
cant two-way interactions of condition and position
(F(4,4) = 11.216, p = 0.019, g2 = 0.918), and position and
delay (F(2, 6) = 12.158, p = 0.008, g2 = 0.802), and, criti-
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cally, a significant three-way interaction of condition, posi-
tion, and delay (F(4, 4) = 19.713, p = 0.007, g2 = 0.952).
We concluded from this that there are indeed significant
differences between the conditions and that there is an
interaction between the position of the target stimuli and
their timing in at least one of the conditions.

To further elucidate this finding, we ran a separate
MANOVA for each condition. Again, we used the miss
rate as the dependent variable, comparing the effects of tar-
get position and timing in the different conditions. The
results of the three separate MANOVA are shown in
Fig. 2: for the lower control condition, we found a trend
for position (F(2, 6) = 4.061, p = 0.077, g2 = 0.575), but
no significant main effect or interaction. For the upper con-
trol condition, we found significant main effects of position
(F(2, 6) = 21.837, p = 0.002, g2 = 0.879), and delay
(F(1, 7) = 9.572, p = 0.017, g2 = 0.578), and a significant
interaction of position and delay (F(2,6) = 9.118,
p = 0.015, g2 = 0.752). These results can be seen as an indi-
cation of a masking effect at the target positions that are
close to the respective mask (lower position for the lower
control condition, upper position for the upper control
condition). Such spatial masking effects were expected,
even though the separation of targets and masks was bigger
than in standard masking stimulus configurations. For-
ward and backward masking effects are known to vary with
the stimulus onset asynchrony of target and mask; there-
fore, an effect of timing on the efficiency of the mask was
expected as well.

For apparent motion, we found a significant main effect
of position (F(2,6) = 22.371, p = 0.002, g2 = 0.882), a trend
for a main effect of delay (F(1,7) = 4.365, p = 0.075,
Fig. 2. Results of repeated measures MANOVA for apparent motion and contr
For apparent motion, we find a significant interaction of position and delay (F(2
lower position at delay 5 and for the upper position at delay 1 as compared to th
(B) For the lower control condition, we found a trend for position (F(2,6) =
specific forward masking effects at the target positions close to the masking stim
of position (F(2,6) = 21.837, p = 0.002, g2 = 0.879), and delay (F(1,7) = 9.572,
(F(2,6) = 9.118, p = 0.015, g2 = 0.752). The pattern observed in this condition n
the target positions close to the masking stimulus.
g2 = 0.384), and a significant interaction of position and
delay (F(2, 6) = 13.326, p = 0.006, g2 = 0.816). As in the
control conditions, we found masking effects for both the
lower and the upper position; furthermore, these masking
effects were stronger for the lower position at delay 5 and
for the upper position at delay 1 as compared to the lower
position at delay 1, and the upper position at delay 5,
respectively. This interaction shows that the perceptual
interference is not distributed uniformly over the apparent
motion trace, but varies with time and space in accordance
with the apparent motion percept. At the same time, the
interaction is absent or at least less pronounced in the con-
trol conditions.

As we found a significant F for the overall analysis of
variance, we now conducted several Fisher-protected post
hoc paired t-tests (two-sided) of interest. Kolmogorov–
Smirnov tests showed that data of all conditions were nor-
mally distributed.

We first examined differences between the conditions for
respective positions and delays to validate our control con-
ditions and to establish motion masking as an effect that is
different from basic forward and backward masking. As
can be seen from Table 1, all comparisons yielded signifi-
cant differences (p 6 0.0424), except for the comparisons
between the two control conditions at the middle position,
and at the lower position at delay 5.

The results of these paired t-tests indicate that the mask-
ing effects in all three conditions stem from different mask-
ing phenomena: as expected, the two control conditions
yield spatially specific increments of the miss rates for tar-
get stimuli closest to the respective control stimuli. In the
lower control condition, the targets appear after the mask,
ol conditions with miss rates (100%-hit rate) as the dependent variable. (A)
,6) = 13.326, p = 0.006, g2 = 0.816). Masking effects were stronger for the
e lower position at delay 1, and the upper position at delay 5, respectively.
4.061, p = 0.077, g2 = 0.575). This can be taken as evidence of spatially

ulus. (C) For the upper control condition, we found significant main effects
p = 0.017, g2 = 0.578), and a significant interaction of position and delay

evertheless argues in favor of spatially specific backward masking effects at



Table 1
Results of paired Fisher-protected t-tests comparing miss rates (%) across conditions

Pairs Paired differences T df Significance (two-sided)

Mean SD SE 95% CI

Lower Upper

con low, pos1, del1 con up, pos1, del5 16.04 18.32 6.48 0.72 31.36 2.48 7 0.0424*

con low, pos1, del5 con up, pos1, del5 11.25 16.13 5.70 �2.23 24.73 1.97 7 0.0891
con low, pos2, del1 con up, pos2, del1 �2.08 5.55 1.96 �6.72 2.55 �1.06 7 0.3233
con low, pos2, del5 con up, pos2, del5 1.04 2.35 0.83 �0.92 3.00 1.26 7 0.2495
con low, pos3, del1 con up, pos3, del1 �23.33 11.48 4.06 �32.93 �13.74 �5.75 7 0.0007*

con low, pos3, del5 con up, pos3, del5 �10.62 8.99 3.18 �18.14 �3.11 �3.34 7 0.0124*

con low, pos1, del1 app mot, pos1, del1 �26.46 19.77 6.99 �42.99 �9.93 �3.79 7 0.0068*

con low, pos1, del5 app mot, pos1, del5 �41.04 20.83 7.37 �58.46 �23.62 �5.57 7 0.0008*

con low, pos2, del1 app mot, pos2, del1 �12.92 8.20 2.90 �19.77 �6.06 �4.45 7 0.0030*

con low, pos2, del5 app mot, pos2, del5 �10.21 10.02 3.54 �18.58 �1.83 �2.88 7 0.0236*

con low, pos3, del1 app mot, pos3, del1 �50.00 19.68 6.96 �66.45 �33.55 �7.19 7 0.0002*

con low, pos3, del5 app mot, pos3, del5 �26.46 16.34 5.78 �40.12 �12.80 �4.58 7 0.0025*

con up, pos1, del5 app mot, pos1, del1 �42.50 26.17 9.25 �64.38 �20.62 �4.59 7 0.0025*

con up, pos1, del5 app mot, pos1, del5 �52.29 28.17 9.96 �75.84 �28.74 �5.25 7 0.0012*

con up, pos2, del1 app mot, pos2, del1 �10.83 7.35 2.60 �16.98 �4.69 �4.17 7 0.0042*

con up, pos2, del5 app mot, pos2, del5 �11.25 9.16 3.24 �18.91 �3.59 �3.47 7 0.0104*

con up, pos3, del1 app mot, pos3, del1 �26.67 11.41 4.03 �36.20 �17.13 �6.61 7 0.0003*

con up, pos3, del5 app mot, pos3, del5 �15.83 13.27 4.69 �26.93 �4.74 �3.37 7 0.0119*

con low, lower control condition; con up, upper control condition; app mot, apparent motion condition; pos1, lower position; pos2, middle position; pos3,
upper position; del, delay; SD, standard deviation; SE, standard error; CI, confidence interval.

* Significant (p < 0.05).
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so these miss rates can be related to forward or paracon-
trast masking. In the upper control condition, the target
appears before the mask, so the effects can be related to
backward or metacontrast masking. Because of the spatial
specificity, the miss rates at the different positions differ.
Where they do not differ, it is likely that no masking has
taken place because the spatial separation is too big.

Additionally, the masking effects in the apparent motion
condition are stronger than in the control conditions for all
positions and timings, as can be seen from the negative sign
of the mean difference. The masking effects in the control
conditions differ from the masking effects in the apparent
motion condition, even though the spatial proximity is pre-
served. Hence, motion masking can probably not be
accounted for by a summing of the two control conditions.

In the initial MANOVA, we found significant interac-
tion effects not only for the apparent motion condition
but also for the upper control condition. In order to further
differentiate the two conditions and to investigate the main
effect of delay, we examined differences between the delays
within experimental conditions. We found differences
between delay 1 and delay 5 at the lower (T(7) = �4.249,
p = 0.004) and the upper position (T(7) = 4.664,
p = 0.002) for apparent motion and a significant difference
between delay 1 and delay 5 only at the upper position
(T(7)=4.204, p = 0.004) for the upper control condition.
There were no significant differences between delays in
the control lower condition. These tests suggest that the
interaction between position and delay found in the control
upper condition stems from the more pronounced back-
ward masking effect on targets with a short delay at the
upper position only. The interaction found under apparent
motion conditions stems, however, from a dissociation of
the delays 1 and 5 at both the lower and upper positions.

To further support this claim, we tried to isolate the
effect of timing by calculating the differences between the
two delays (1 � 5) at the respective positions within condi-
tions. A comparison of all difference scores to 0 yielded sig-
nificant results for apparent motion at the lower
(T(7) = �4.249, p = 0.004) and the upper position
(T(7) = 4.664, p = 0.002) and for the upper control condi-
tion at the upper position (T(7) = 4.204, p = 0.004) only.
From this it can again be concluded that the timing of
the targets had a differential effect in apparent motion
and for a specific position in the upper control condition,
but that there was no difference for the two timings in
the lower control condition.

We then compared this measure of timing differences
across conditions (results of the paired t-test are in Table
2). As can be seen from Fig. 3, performance under apparent
motion conditions is best at the short delay at the lower
position and at the long delay at the upper position, consis-
tent with the notion that it coincides with an illusion that
starts at the lower position and moves upwards. This rela-
tionship is apparent as a sign shift in Fig. 3 from the lower
position to the upper position, which shows that targets
which appeared in time (delay 1 at the lower position, delay
5 at the upper position) were subject to weaker masking
than targets which appeared out of time. We do not find
this sign change for any of the control conditions; there-
fore, the interaction between position and delay is specific
to motion masking.

As the most conservative measure of difference between
motion masking and forward and backward masking, we
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suggest the timing discrepancy of control lower and appar-
ent motion at the lower position and of control upper and
apparent motion at the upper position because of the spa-
tial specificity of the masking effects. As can again be seen
from Table 1, both comparisons yield significant differ-
ences, which is indicative of an influence of timing in
motion masking which is different from the one expected
in combined forward and backward masking.
Fig. 3. Differences between the two delays (1 � 5) at the respective
positions within conditions. Differences scores are significantly different
from 0 for apparent motion at the lower (T(7) = �4.249, p = 0.004) and
the upper position (T(7) = 4.664, p = 0.002) and for the upper control
condition at the upper position (T(7) = 4.204, p = 0.004) only. As can be
seen from Table 2, the difference in timing observed for apparent motion
differs from the difference obtained in the control conditions at the upper
and the lower target position. Critically, a sign shift is evident only in the
case of apparent motion. This sign shift can be taken as evidence for a
spatio-temporal pattern of motion masking which is consistent with the
assumed time course of the apparent motion: targets which appear in time
with the presumed linear movement of an apparent motion token are
detected significantly more often than those that appear too early or too
late, respectively (delay 5 > delay 1 at the lower position, delay 1 > delay 5
at the upper position).
4. Discussion

4.1. Dynamic representation?

The results of this experiment show that apparent
motion has a diminishing effect on the detectability of tar-
gets on the apparent motion trace, thereby replicating the
results of Yantis and Nakama (1998) with a different crite-
rion content. In our control conditions, we also show that
the masking observed in the apparent motion condition is
different from the masking found under paracontrast (for-
ward-) and metacontrast (backward-) masking conditions:
by presenting only one part of the apparent motion stimu-
lus configuration at a time, namely the upper or the lower
blinking stimulus, we dissociate the para- and metacontrast
masking effects form the motion masking; a comparison of
these with the apparent motion condition leaves us with the
effect of motion masking. Critically, we extend the notion
of motion masking by the identification of a spatio-tempo-
ral pattern that is consistent with the assumed time course
of the apparent motion: while the overall level of detect-
ability during apparent motion is significantly lower than
in the control conditions, targets that appear in time with
the apparent motion percept are detected more often than
those that appear at an unexpected position or point in
time.

We can show a facilitating effect of the matching for a
short delay close to the starting point of the apparent
motion illusion, as well as for a long delay close to the end-
point of the illusion. The miss rates for these combinations
Table 2
Results of paired Fisher-protected t-tests comparing timing differences across

Pairs Paired differences

Mean SD SE

con low, pos1 con up, pos1 4.79 4.49 1.59
con low, pos2 con up, pos2 �3.13 4.83 1.71
con low, pos3 con up, pos3 �12.71 7.23 2.56
con low, pos1 app mot, pos1 14.58 9.20 3.25
con low, pos2 app mot, pos2 �2.71 6.04 2.13
con low, pos3 app mot, pos3 �23.54 13.90 4.91
con up, pos1 app mot, pos1 9.79 6.81 2.41
con up, pos2 app mot, pos2 .42 8.90 3.15
con up, pos3 app mot, pos3 �10.83 12.12 4.28

con low, lower control condition; con up, upper control condition; app mot, app
upper position; SD, standard deviation; SE, standard error; CI, confidence int

* Significant (p < 0.05).
of target locations and timings are significantly lower than
for those targets which appear too late or too early at the
same locations. This specific pattern of detectability argues
further against the case of masking effects unrelated to
motion, as the detectability is higher at short intervals
between target and masks, whereas the opposite could be
expected for para- and metacontrast.

In an experiment comparing real and apparent motion,
Kolers (1963a, 1963b) only found a U-shaped function of
detectability for targets that appeared on the path of real
motion. The minimum in this function was identified at
the point where the motion stimulus and the target over-
conditions

T df Significance (two-sided)

95% CI

Lower Upper

1.04 8.55 3.02 7 0.0195*

�7.17 .92 �1.83 7 0.1102
�18.76 �6.66 �4.97 7 0.0016*

6.89 22.28 4.48 7 0.0029*

�7.76 2.34 �1.27 7 0.2451
�35.16 �11.92 �4.79 7 0.0020*

4.10 15.49 4.07 7 0.0048*

�7.02 7.86 .13 7 0.8984
�20.96 �0.70 �2.53 7 0.0393*

arent motion condition; pos1, lower position; pos2, middle position; pos3,
erval.
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lapped perfectly. This finding is somehow intuitive, as one
would certainly expect two overlapping stimuli to somehow
interfere with each other. Using only a single target posi-
tion, Kolers (1963a, 1963b) found no such U-shaped func-
tion in the case of apparent motion. The detectability of
targets was generally low, but it increased for incidents
where apparent motion and targets appeared together in
time.

Collapsing the results of our two extreme target posi-
tions, we actually find a function of detectability with a
maximum at ‘in time’ as compared to targets that appear
too early or too late. If the motion token was represented
dynamically and analogous to real motion, a further decre-
ment of detectability could be expected for targets which fit
the apparent motion percept spatially as well as tempo-
rally, resembling the finding by Kolers (1963a, 1963b) for
targets that spatio-temporally fitted real motion. This pre-
diction is not met by our data. Still, the general decrease of
detectability can be interpreted as a consequence of the
conflicting representations of a moving stimulus and of a
stationary target stimulus, as in object substitution mask-
ing (Di Lollo, Enns, & Rensink, 2000; Enns & Di Lollo,
1997).

How then, can these specific dynamics be explained? The
activity in V1 on the apparent motion trace can be inter-
preted as a prediction (Mumford, 1992) of a token moving
over retinotopic space. This prediction is potentially gener-
ated by visual motion areas such as hMT+/V5, which feed-
back the prediction as activity onto V1. Here, the
prediction could be compared with the existing or incoming
evidence for a moving object. One indication for such a
search for evidence is the phenomenon of path-guided
apparent motion, where additional evidence presented on
the whole path between apparent motion origin and termi-
nus (Shepard & Zare, 1983) can override the usual spatio-
temporal conditions for apparent motion. Our results point
in a direction that the prediction is not only spatial (as indi-
cated by previous neuroimaging studies), but indeed spa-
tio-temporal. Evidence for the prediction should therefore
accord to the spatial as well as temporal aspects of the pre-
diction. A stationary object is not necessarily evidence for a
moving token, and thus it might conflict with the predicted
token. The result would be ‘‘motion masking’’, in our case
the general decrease of detectability of both the in-time and
the out of time targets during apparent motion. The closer
a target gets to the predicted token in a hypothetical fea-
ture space, the less masking should occur. A target that
appears in-time with the moving token would fit the predic-
tion better than a target that will appear out of time. There-
fore, it should be masked less. A spatio-temporally fitting
motion stimulus on the apparent motion trace might not
be masked at all (Attneave, 1974).

Moreover, it can be argued that a target stimulus which
is very different from the stimuli inducing the apparent
motion percept (as in the Yantis and Nakama study) will
be masked more than a stimulus that is very similar to
the apparent motion origin and terminus (as in our study),
because the later stimulus will fit the prediction better than
the former. However, the neuronal locus of interference
during a letter discrimination task has been suggested not
to be in V1, but at the border of hMT+/V5 and the lateral
occipital complex (Liu et al., 2004), where the analysis of
form and the analysis of motion might interfere with each
other (but see Downing, Wiggett, & Peelen, 2007; Spiridon,
Fischl, & Kanwisher, 2006).

The model for a prediction has to be established over
time: when only a single cycle of apparent motion is pre-
sented, the motion percept is postdicted (Beck, Elsner, &
Silverstein, 1977), rendering motion masking unlikely (see
below). However, after several cycles of apparent motion,
the system is thought to be able to compute the motion
percept in real time (Kolers, 1972). In fact, the percep-
tion of motion persists for a few additional cycles if
one of the inducing stimuli is suddenly eliminated (Wert-
heimer, 1912). A study on perceptual learning comple-
ments these results: if an irrelevant motion stimulus is
paired with a reinforced task-relevant stimulus, subjects
report seeing motion in the direction of the paired
motion stimulus in blank displays. This effect is not seen
for non-paired motion directions (Seitz, Nanez, Hollo-
way, Koyama, & Watanabe, 2005). Furthermore, strong
expectations can indeed override bottom up apparent
motion cues (Tse & Cavanagh, 2000), and prior knowl-
edge about the direction and velocity of moving targets
enhances their detectability (Ball & Sekuler, 1980; Sekul-
er & Ball, 1977).

Whether the specific spatio-temporal pattern of motion
masking (or any motion masking at all) can be found under
unpredictable apparent motion conditions, is an open
question. It can be argued that in a case where the direction
and velocity of an apparent motion percept are not already
established, the sudden presentation of an additional tran-
sient stimulus on the apparent motion trace would disrupt
or change the formation of a stable perceptual object over
the whole intended trajectory. Depending on the spatio-
temporal relationship of the stimuli, two-step apparent
motion or a series of successive events with little or without
any motion between them would then be perceived (Kahn-
eman, 1967). Without the formation of a perceptual object
spanning the whole trajectory, motion masking on this tra-
jectory is unlikely to occur. Evidence for this line of argu-
mentation stems from the finding that motion masking
occurs only under optimal apparent motion conditions
(Yantis & Nakama, 1998).

Another explanation of our results involves attention as
a second mechanism which counteracts the effects of
motion masking. Attention is a likely candidate, as it has
been shown that two mechanisms subserve the perception
of motion: one basic mechanism that relies exclusively on
the activity of motion-detectors, and an additional atten-
tional mechanism, that actively tracks the moving stimuli
(Cavanagh, 1991, 1992; Hikosaka et al., 1993; Lu & Sper-
ling, 1995). Both mechanisms work in parallel, and are con-
founded in our detection paradigm.
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The relative increase in detectability of in-time targets
could then be interpreted as a result or byproduct of an
attentive tracking that follows the highly predictable trajec-
tory of the apparent motion stimulus. The focus of atten-
tion could either jump or shift positions from one
stimulus to the other. As attention is alternately attributed
to the lower and the upper part of the stimulus configura-
tion (or across the trace), targets in the attentional focus
profit from facilitated processing.

The detection of targets appearing not in time with the
motion percept remains impaired, as no attention-depen-
dent facilitation can take place at that instant. This is a
speculative account, as we did not explicitly control the
allocation of attention in our paradigm. Different dynamics
of the representation of the moving stimulus might surface
in a case where attention is allocated elsewhere and does
not counteract the masking. However, it seems difficult to
explain the general decrease in detectability of both in-time
and out of time stimuli when invoking attention as the sole
explanation of the observed spatio-temporal dynamics of
motion masking.

4.2. Motion masking is not forward and backward masking

Apparent motion and forward as well as backward
masking stimulus configurations are indeed very similar:
basically, spatially non-overlapping stimuli are repeated
in rapid succession. The separation of para- and metacon-
trast masking from motion masking is important, because
they mimic the effects of motion masking. For example,
detailed contour information of the apparent motion origin
is suppressed by the apparent motion terminus (Breitmey-
er, Battaglia, & Weber, 1976; Breitmeyer, Love, & Wep-
man, 1974). Nonetheless, it has been shown that
(metacontrast) masking and apparent motion differ sub-
stantially (Breitmeyer, 1984; Weisstein & Growney, 1969).
In addition, metacontrast masking can be observed in situ-
ations where no apparent motion is perceived (Stoper &
Banffy, 1977). Thus, apparent motion is neither sufficient
nor necessary to produce (metacontrast) masking, but this
does not necessarily imply that apparent motion and mask-
ing do not share some of their basic mechanisms.

We expected only limited masking effects in the non-
apparent motion conditions, because the large spatial sep-
aration (>4�) of our stimuli is clearly above the maximum
separation at which forward (<1�; Efron & Yund, 1999)
and backward masking (3�; Weisstein & Growney, 1969)
have been observed. But as the precise effects of masking
strongly vary with criterion as well as stimulus configura-
tion, we decided to control for these effects. Given that for-
ward and backward masking take place, we tried to isolate
the stimuli responsible for possible masking effects unre-
lated to the apparent motion itself. As can be seen from
Fig. 2, the detectability in the presence of apparent motion
drops significantly even below the levels reached in the
aforementioned masking conditions. Thus, the presence
of motion seems to have an effect on the representation
of the targets on the motion trace. We claim that the differ-
ences from the maximally possible hit rate in the control
conditions stem from masking effects, but they might as
well be caused by inattention. Still, the pattern observed
across positions in the control conditions seems to be indic-
ative of a limited effect of forward and backward masking
on the nearest respective stimuli.

A further speculative point has to be made on the ques-
tion of the generally high detectability of the target at the
middle position. As we only used two delays, there was
no target that appeared in time at this location. Therefore,
we would have expected a generally low hit rate in the
apparent motion condition, but in fact, the opposite was
found. Basically, we propose that it was easier to detect
these targets, because the targets were closer to the fixation
cross and because no spatially determined para- and meta-
contrast masking effects took place.

Another possibility is that the large receptive fields in
hMT+/V5 always overlapped at the middle position. If
attention jumps or shifts in accordance with the spatial lay-
out of the apparent motion stimulus configuration detected
by these receptive fields, it might always be allocated to the
middle position as well, even though the focus or center lies
on the apparent motion origin or terminus. The same holds
true for a spatio-temporal prediction that would always
include the middle position.

A mechanism that seems likely to be involved in motion
masking is object substitution masking (Di Lollo et al.,
2000; Enns & Di Lollo, 1997): this particular form of mask-
ing is thought to take place on the level of representations.
Specifically, it is hypothesized to be a consequence of per-
ceptual hypothesis testing on the basis of re-entrant feed-
back loops between higher and lower cortical visual
areas. If re-entrant information, initially caused by the tar-
get and the mask, is confirmed by the actual stimulus dis-
play or a decaying trace of target stimulus activity on the
lower level, no masking takes place. If, however, the re-
entrant information does not match the actual representa-
tion and the target signal has already decayed, a new rep-
resentation is created, and masking takes place: the visual
token ‘‘target’’ is replaced by the visual token ‘‘mask’’.
Attention or a precise prediction concerning the target
reduce the amount of iterations needed to test the percep-
tual hypothesis, and therefore facilitate the detection of
decaying target activity. Hence, the effects of object substi-
tution masking are diminished when attention is focused or
pre-cued on the target location (Di Lollo et al., 2000).

4.3. Connection to neurophysiological results

During apparent motion, neuronal activity between the
apparent motion origin and terminus has been shown to
exist in V1; this activation is without a physical counterpart
and has been related to re-entrant feedback from higher
visual motion areas such as hMT+/V5 to V1 (Larsen
et al., 2006; Muckli et al., 2005; Sterzer et al., 2006). In
line with previous theoretical considerations (Yantis &
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Nakama, 1998), we suggest that it is this feedback activity
that interferes with the representation of the stationary tar-
get stimulus on the level of V1, and thereby hinders its
detection. This interpretation seems plausible given the evi-
dence of re-entrant processing between motion-sensitive
areas and V1 (Angelucci & Bullier, 2003; Galuske,
Schmidt, Goebel, Lomber, & Payne, 2002; Hupe et al.,
2001, 1998; Sillito, Cudeiro, & Jones, 2006).

Whereas interference on the level of V1 can account for
the general decrease in detectability of the targets on the
apparent motion trace, it cannot necessarily account for
the improved detection of targets that appear in time with
the apparent motion percept. Present models need to be
extended with a component that explains temporally vari-
ant interference.

We have argued that the reduction of motion masking
for the in-time targets is possibly due to an attentional pro-
cess. Previous evidence from fMRI suggests that motion
information is read out by parietal and frontal regions
and used to guide the focus of attention during attentive
tracking of moving objects (Culham et al., 1998). To
account for the present results, it is possible to assume that
the feedback information from hMT+/V5 and from parie-
tal and frontal regions converges in V1: targets that would
otherwise be masked profit from facilitated processing in
the attentional focus that moves with the motion trace.

However, the activity found in V1 is not solely due to
attention, as it persists even when attention is drawn away
from the motion stimulus (Muckli et al., 2005). Mumford
(1992) proposed as a general principle that higher order
areas send ‘‘templates’’ (or predictions; Gilbert & Sigman,
2007) via descending pathways to lower order areas where
these templates are compared to the incoming information.
The templates are thought to be stored in the synaptic
weights of deep pyramidal cells (layer 6) of hMT+/V5
and sent to layer 6 of V1. Evidence that fits the templates
is thought to be processed preferentially. Residuals are
computed by more superficial layers and send back via
layer 4B to the higher order areas, where templates will
be updated accordingly. After several loops, the system
reaches a stable state, and continues working with the
established model. When no residuals are to be computed,
the superficial layers stop firing, while the deeper layers
continue to receive and send incoming feedforward
information.

Illusions such as apparent motion can be interpreted as
‘‘templates’’ that affect the lower areas by themselves, even
without further input. The lateral geniculate nucleus
(LGN) of the thalamus (Mumford, 1991) or areas V1/V2
(Bullier, 2001; Lee, Mumford, Romero, & Lamme, 1998)
have been proposed to serve as ‘‘active blackboards’’ that
integrate in their neuronal responses these computations
carried out in higher order areas.

We suggest that hMT+/V5 generates a spatio-tempo-
rally specific motion model that is fed back to V1 (or via
V1 to the LGN). This model could be used to search
for more evidence for a moving stimulus on the predicted
trajectory. The stationary in-time targets we present do
not perfectly fit the model, but they might serve as evidence
because they are spatio-temporally congruent with the
model. Therefore, they might be processed preferentially,
resulting in a higher hit rate than for the out of time
stimuli.

Our finding of a behavioral spatial-temporal interaction
along the motion trace can be taken as an indication that
the activity found in V1 is not simply an epiphenomenal
byproduct of the computations in hMT+/V5. Activity in
V1 could reflect the result of motion information extraction
in higher visual areas and play a relevant role in the pro-
cessing of new upcoming information. We propose that
the phenomenon of motion masking might be a valuable
tool for investigations of the dynamical interaction
between predicted information and the processing of new
sensory stimulation.
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